Model-based Automated Security Functional Testing

Dr. R. Chandramouli (Mouli) mouli@nist.gov

(Security Division – National Inst. Of Standards & Technology

OMG's Seventh Annual Workshop On

DISTRIBUTED OBJECTS and COMPONENTS SECURITY

April 7-10, 2003

Baltimore, Maryland, USA

Common Symbols, Abbreviations and Acronyms

Tool

API DCP Application programming interface

Domain Convergence Path

GUI

Graphical user interface

Java

High-level programming language

JDBC

Java Database Connectivity

NIST

National Institute of Standards and

Technology

Machine readable artifact

Manual process

NRL

Naval Research Laboratory

SCR

Software Cost Reduction

SFT

Security Functional Testing

Textual document SQL

Structi

Structured Query Language

TAF

Test Automation Framework

TTM

T-VEC Tabular Modeler

Object mapping

Tabular model

2

Model-based Automated Security Functional Testing (TAF-SFT Toolkit) – Presentation Topics

- Security Testing Characteristics
- Improving the Economics of Security Functional Testing (TAF)
- TAF for Security Functional Testing (SFT) TAF-SFT Tool Kit
- TAF-SFT Toolkit Architecture & Key Process Steps
- TAF-SFT Reference Implementation Commercial DBMS
- Advantages, Disadvantages & Conclusion

Security Testing - Characteristics

Traditional Software Conformance Testing	Security Testing
Verification of Correctness – Market determines Effectiveness	Both Correctness & Effectiveness are integral parts of specifications
Verification for Conformance to Functional Specs	Verification for Conformance to Functional Specs & Underlying Security Model
Statistical Coverage Measures guarantee correct functional behavior	Potential for exploiting obscure flaws to subvert intended security behavior 4

Security Testing – Characteristics (contd..)

- Two General Categories
- 1. Security Functional Testing (WHAT SHOULD DO)
 - Testing for Conformance to Security Function
 Specifications & Underlying Security Model

- 2. Security Vulnerability Testing(WHAT SHOULD NOT DO)
 - -- Identification of flaws in design or implementation that can subvert intended security behavior

Improving the Economics of Security Functional Testing (TAF)

- Independent Security Functional Testing rarely performed in traditional security evaluations & certifications.
 - Complexity: Representing Security Functional specifications & determining coverage
 - Costs: Non-reusability of previously developed tests

 Test Automation Framework (TAF) – Improving the economics of Security Functional Testing through end-to-end tool support.

TAF for Security Functional Testing – TAF-SFT Toolkit (**) - automated)

- <u>Step 1</u>: Develop a behavioral model of security function specification using a tabular specification language called SCR.
- <u>Step 2:</u>Translate SCR specifications to T-VEC Test Specifications •
- <u>Step 3:</u>Generate test vectors from transformed SCR specifications and perform coverage analysis •
- <u>Step 4:</u> Develop test driver schemas and object mappings (explained latter) for target test environment.
- <u>Step 5</u>:Generate test drivers, execute tests and generate test report.

Modeling Security Functions in SCR

• Models the behavior of a software system using Tabular functions involving the following types of variables

Variable Class	Description					
Controlled	Output object Input object					
Monitored						
Term	Auxiliary Variable (Combination of Monitored Variables or other terms)					
Mode Class (finite state machine)	Members are Modes. A mode represents a system state ₁₀					

• The following are the various Tabular Functions in SCR

Type of Function	Description				
Condition	value of a variable under all possible states				
Event	the value of a variable after an event occurs				
Mode Transition	Shows the source mode, an event and the destination mode				

(Condition Function Table for Term Variable – *User_Has_Delete_Access*

Table Name	Condition							
	(User_Object_Priv = 'ALL') OR (User_Object_Priv = 'DELETE')	(User_Object_Priv != 'ALL') AND (User_Object_Priv != 'DELETE')						
User_Has _Delete_ Access	TRUE	FALSE						

(Condition Function Table for Controlled Variable – *Grant_Delete_Access*

Table Name	Condition							
	(UserID=Active_User) AND (User_Has_Delete _Access)	(UserID != Active_User) OR NOT(User_Has_Delete_Access)						
Grant_ Delete_ Access	TRUE	FALSE						

Translating SCR Model to T-VEC Test Specification

- The T-VEC test specification is made up of
 - Input-Output Functional Relationships
 - Relevance Predicate (a set of constraints on inputs)

Input-Output Functional Relationship that corresponds to
 Condition Function Table – Grant_Delete_Access
 e.g. (UserID = Active_User) & (User_Has_Delete_Access) →
 Grant_Delete_Access

Translating SCR Model to T-VEC Test Specification (contd...)

- Relevance Predicate are expressed as
- a set of disjunctions of conjunctions and each disjunction is called a "DOMAIN CONVERGENCE PATH (DCP)"
- Relevance Predicates for the Functional Relationship

```
(UserID = Active_User) & (User_Has_Delete_Access) →
```

Grant_Delete_Access is

 $((UserID = Active_User) & (User_Object_Priv = `ALL'))$

OR

((UserID = Active_User) & (User_Object_Priv = 'DELETE'_1))

Application of TAF-SFT Toolkit for Oracle DBMS Security Functional Testing

Building a SCR Model for a Security Function

• Text Description of the Grant Object Privilege (GOP) Security Function

A normal user (the grantor) can grant an object privilege to another user, role or PUBLIC (the grantee) only if:

- a) the grantor is the owner of the object; (GOP (a)) or
- b) the grantor has been granted the object privilege with the GRANT OPTION. (GOP (b))
- The interface-related information (SQL commands & valid values) required are: $GRANT < object_privilege > ON < object > TO < user | role | PUBLIC > [WITH GRANT OPTION] where < object_privilege > can be one of: ALL, UPDATE, SELECT, INSERT, DELETE and the GRANT OPTION is optional$

Condition Function Tables for Grant Object Privilege (GOP) Security Function

lable name Condition						
grantor = selectedObjOwner NOT(grantor = selectedObjOwner)						
grantor_owns_object =	TRUE	FALSE				
Table Name		tion				
Table Name	(GRANT_C	Condit	NOT(GRANT_OPTION			
	AND	PHON	_			
	–	hiBaire and a dOhiBaire)	AND			
		bjPriv = grantedObjPriv)	selectedObjPriv = grantedObjPriv)			
		edObj = grantedObj	AND selectedObj = grantedObj			
		edObjOwner!= grantor	AND selectedObjOwner != grantor	DAC		
		edObjOwner!= grantee	AND selectedObjOwner != grantee	Constraints		
has_grantable_obj_pri	ivs = IRUE		FALSE			
	Table Name	C	Condition			
		((grantor_owns_object)	(NOT(grantor_owns_object))	GOP(a)		
		OR ,	AND			
		(has_grantable_obj_privs))	(NOT(has_grantable_obj_privs))	GOP(b)		
		AND	AND			
		(grantor != grantee)	(grantor != grantee)			
		AND	AND			
		(granteeType = user	(granteeType = user			
		OR (granteeType = role	OR (granteeType = role			
		AND	AND	Domain		
		granteeRoleID = valid_roleID) granteeRoleID = valid_roleID))			
		OR granteeType = PUBLIC)	AND	Constraints		
		AND	(selectedObjPriv = ALL			
		(selectedObjPriv = ALL	OR selectedObjPriv = UPDATE			
		OR selectedObjPriv = UPDATE	•			
		OR selectedObjPriv = SELECT	OR selectedObjPriv = INSERT			
		OR selectedObjPriv = INSERT	OR selectedObjPriv = DELETE)			
		OR selectedObjPriv = DELETE)				
grar	nt_obj_priv_OK =		FALSE			
<u> </u>	1-1	•	•			

Converting SCR Specification of GOP Security Function to T-VEC Test Spec

Test Vectors Generated for GOP Security Function

			grant_obj			grantee	grantee		selected		GRANT_	granted	selected	granted
	#	TSP	_priv_OK	grantor	grantee	Туре	RoleID	valid_roleID	ObjPriv	abjOwner	OPTION	ObjPriv	Obj	O bj
	1	1	TRUE	1	2	user	2	2	ALL	1	TRUE	ALL	4	4
	2	1	TRUE	4	3	user	1	1	ALL	4	FALSE	SELECT	1	1
	3	2	TRUE	1	2	user	2	2	UPDATE	1	TRUE	ALL	4	4
	4	2	TRUE	4	3	user	1	1	UPDATE	4	FALSE	SELECT	1	1
	5	3	TRUE	1	2	user	2	2	SELECT	1	TRUE	ALL	4	4
	6	3	TRUE	4	3	user	1	1	SELECT	4	FALSE	SELECT	1	1
	7	4	TRUE	1	2	user	2	2	INSERT	1	TRUE	ALL	4	4
	8	4	TRUE	4	3	user	1	1	INSERT	4	FALSE	SELECT	1	1
	9	5	TRUE	1	2	user	2	2	DELETE	1	TRUE	ALL	4	4
	10	5	TRUE	4	3	user	1	1	DELETE	4	FALSE	SELECT	1	1
ı	77	30	FALSE	1	2	role	1	1	INSERT	3	FALSE	ALL	1	1
		39		1			1			3	_		1	1
	7 8	39		4	3		2		INSERT	2	FALSE	SELECT	4	4
	7 9	40		1		role	1		DELETE	3		ALL	1	1
	80	40	FALSE	4	3	role	2	2	DELETE	2	FALSE	SELECT	4	
														20

Object Mapping & Test Driver Schema

- Object Mapping File
 - Mapping from Model Variables to Interfaces of the System under test (for Oracle 8.0.5 – the interfaces are JDBC Commands, SQL Commands & Oracle Data Dictionary Views)
- Test Driver Schema Algorithmic pattern for conducting tests

```
Global init;
Forall tests
init target;
set inputs;
execute Test;
get outputs;
store output;
endforall
```

TAF-SFT Toolkit Approach – Advantages & Disadvantages

<u>Advantages</u>

- Better Quality of Specifications and quality of test data
- Automated coverage analysis, generation of test code and results analysis

Disadvantages

- Detailed knowledge of security function semantics required for the modeler
- Development of Object Mapping information laborious for products with complex interfaces

Conclusions

Ideal Situations for Maximizing the Return on Investment for TAF-SFT

- Partial re-use of SCR security behavioral model possible
- Partial re-use of Object Mapping Information

Found in Product Environments

- Interoperable security APIs like CDSA and some crypto APIs
- Standardized Programming interfaces like JDBC